Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.113
1.
Sci Rep ; 14(1): 10495, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714807

Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed. Two minutes long 64-channel EEG recordings were registered during resting, eyes closed condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC-c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, the result of lower diameter, higher leaf number, and also higher maximum degree and maximum betweenness centrality in patients suggest a star-like, and more random network topology in patients with schizophrenia. Our findings are in accordance with some previous findings based on resting-state EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less optimal, more centralized organization.


Brain , Electroencephalography , Schizophrenia , Humans , Schizophrenia/physiopathology , Electroencephalography/methods , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Rest/physiology , Algorithms , Middle Aged , Magnetic Resonance Imaging/methods , Case-Control Studies , Young Adult
2.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Article En | MEDLINE | ID: mdl-38729664

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Depressive Disorder, Major , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Female , Male , Adult , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Rest , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Connectome , Treatment Outcome , Brain/physiopathology , Brain/diagnostic imaging
3.
Front Endocrinol (Lausanne) ; 15: 1385143, 2024.
Article En | MEDLINE | ID: mdl-38699391

Background and aims: Most studies have analyzed the relationship between resting heart rate (RHR) measured at only one time point and future clinical events. The current study aims to investigate the impact of long-term RHR changes on future clinical outcomes in a decade-long cohort with type 2 diabetes mellitus (T2DM). Methods: The two-staged follow-up involved 2,513 T2DM participants. The first stage (2008-2014) intended to identify levels and trends in RHR changes, while the second stage (2014-2018) attempted to collect new occurrence records of clinical results. Cox proportional hazards models were applied to predict hazard ratios (HRs), along with 95% confidence interval (CI) for the correlation between RHR changes and future events. Results: There is no significant correlation between baseline RHR levels and long-term clinical events. According to the range of RHR change, compared with the stable RHR group, the adjusted HRs for cardiovascular events and all-cause death in the large increase group were 3.40 (95% CI: 1.33-8.71, p=0.010) and 3.22 (95% CI: 1.07-9.64, p=0.037), respectively. While the adjusted HRs for all-cause death and major adverse cardiac and cerebrovascular events (MACCE) in the moderate decrease group were 0.55 (95% CI: 0.31-0.96, p=0.037) and 0.51 (95% CI: 0.26-0.98, p=0.046). According to the trend of RHR, compared with the normal-normal group, the adjusted HRs for composite endpoint events and cerebrovascular events in the normal-high group were 1.64 (95% CI: 1.00-2.68, p=0.047) and 2.82 (95% CI: 1.03-7.76, p=0.043), respectively. Conclusion: Changes in RHR had predictive value for long-term clinical events in diabetic populations. Individuals with significantly elevated RHR over a particular period of time showed an increased risk of adverse events.


Diabetes Mellitus, Type 2 , Heart Rate , Humans , Male , Female , Heart Rate/physiology , Diabetes Mellitus, Type 2/physiopathology , Middle Aged , Follow-Up Studies , Aged , Prognosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Rest/physiology , Adult , Risk Factors , Time Factors
4.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38725293

Numerous studies reported inconsistent results concerning gender influences on the functional organization of the brain for language in children and adults. However, data for the gender differences in the functional language networks at birth are sparse. Therefore, we investigated gender differences in resting-state functional connectivity in the language-related brain regions in newborns using functional near-infrared spectroscopy. The results revealed that female newborns demonstrated significantly stronger functional connectivities between the superior temporal gyri and middle temporal gyri, the superior temporal gyri and the Broca's area in the right hemisphere, as well as between the right superior temporal gyri and left Broca's area. Nevertheless, statistical analysis failed to reveal functional lateralization of the language-related brain areas in resting state in both groups. Together, these results suggest that the onset of language system might start earlier in females, because stronger functional connectivities in the right brain in female neonates were probably shaped by the processing of prosodic information, which mainly constitutes newborns' first experiences of speech in the womb. More exposure to segmental information after birth may lead to strengthened functional connectivities in the language system in both groups, resulting in a stronger leftward lateralization in males and a more balanced or leftward dominance in females.


Language , Sex Characteristics , Spectroscopy, Near-Infrared , Humans , Female , Spectroscopy, Near-Infrared/methods , Male , Infant, Newborn , Brain/physiology , Brain/diagnostic imaging , Rest/physiology , Functional Laterality/physiology , Neural Pathways/physiology , Brain Mapping/methods
5.
Int J Behav Nutr Phys Act ; 21(1): 51, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698447

BACKGROUND: There is a growing population of survivors of colorectal cancer (CRC). Fatigue and insomnia are common symptoms after CRC, negatively influencing health-related quality of life (HRQoL). Besides increasing physical activity and decreasing sedentary behavior, the timing and patterns of physical activity and rest over the 24-h day (i.e. diurnal rest-activity rhythms) could also play a role in alleviating these symptoms and improving HRQoL. We investigated longitudinal associations of the diurnal rest-activity rhythm (RAR) with fatigue, insomnia, and HRQoL in survivors of CRC. METHODS: In a prospective cohort study among survivors of stage I-III CRC, 5 repeated measurements were performed from 6 weeks up to 5 years post-treatment. Parameters of RAR, including mesor, amplitude, acrophase, circadian quotient, dichotomy index, and 24-h autocorrelation coefficient, were assessed by a custom MATLAB program using data from tri-axial accelerometers worn on the upper thigh for 7 consecutive days. Fatigue, insomnia, and HRQoL were measured by validated questionnaires. Confounder-adjusted linear mixed models were applied to analyze longitudinal associations of RAR with fatigue, insomnia, and HRQoL from 6 weeks until 5 years post-treatment. Additionally, intra-individual and inter-individual associations over time were separated. RESULTS: Data were available from 289 survivors of CRC. All RAR parameters except for 24-h autocorrelation increased from 6 weeks to 6 months post-treatment, after which they remained relatively stable. A higher mesor, amplitude, circadian quotient, dichotomy index, and 24-h autocorrelation were statistically significantly associated with less fatigue and better HRQoL over time. A higher amplitude and circadian quotient were associated with lower insomnia. Most of these associations appeared driven by both within-person changes over time and between-person differences in RAR parameters. No significant associations were observed for acrophase. CONCLUSIONS: In the first five years after CRC treatment, adhering to a generally more active (mesor) and consistent (24-h autocorrelation) RAR, with a pronounced peak activity (amplitude) and a marked difference between daytime and nighttime activity (dichotomy index) was found to be associated with lower fatigue, lower insomnia, and a better HRQoL. Future intervention studies are needed to investigate if restoring RAR among survivors of CRC could help to alleviate symptoms of fatigue and insomnia while enhancing their HRQoL. TRIAL REGISTRATION: EnCoRe study NL6904 ( https://www.onderzoekmetmensen.nl/ ).


Cancer Survivors , Circadian Rhythm , Colorectal Neoplasms , Exercise , Fatigue , Quality of Life , Rest , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Male , Female , Middle Aged , Prospective Studies , Circadian Rhythm/physiology , Cancer Survivors/psychology , Aged , Longitudinal Studies , Surveys and Questionnaires
6.
Brain Behav ; 14(5): e3518, 2024 May.
Article En | MEDLINE | ID: mdl-38698619

OBJECTIVE: The objective of this study was to investigate the functional changes associated with mild cognitive impairment (MCI) using independent component analysis (ICA) with the word generation task functional magnetic resonance imaging (fMRI) and resting-state fMRI. METHODS: In this study 17 patients with MCI and age and education-matched 17 healthy individuals as control group are investigated. All participants underwent resting-state fMRI and task-based fMRI while performing the word generation task. ICA was used to identify the appropriate independent components (ICs) and their associated networks. The Dice Coefficient method was used to determine the relevance of the ICs to the networks of interest. RESULTS: IC-14 was found relevant to language network in both resting-state and task-based fMRI, IC-4 to visual, and IC-28 to dorsal attention network (DAN) in word generation task-based fMRI by Sorento-Dice Coefficient. ICA showed increased activation in language network, which had a larger voxel size in resting-state functional MRI than word generation task-based fMRI in the bilateral lingual gyrus. Right temporo-occipital fusiform cortex, right hippocampus, and right thalamus were also activated in the task-based fMRI. Decreased activation was found in DAN and visual network MCI patients in word generation task-based fMRI. CONCLUSION: Task-based fMRI and ICA are more sophisticated and reliable tools in evaluation cognitive impairments in language processing. Our findings support the neural mechanisms of the cognitive impairments in MCI.


Cognitive Dysfunction , Language , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Aged , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain Mapping/methods , Brain/physiopathology , Brain/diagnostic imaging , Rest/physiology
7.
JMIR Public Health Surveill ; 10: e55211, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713911

BACKGROUND: The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE: We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS: We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS: During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS: Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.


Cognitive Dysfunction , Dementia , Rest , Humans , Female , Male , Cognitive Dysfunction/epidemiology , Middle Aged , Aged , Dementia/epidemiology , Prospective Studies , Rest/physiology , Adult , United Kingdom/epidemiology , Actigraphy , Risk Factors , Circadian Rhythm/physiology
8.
Sci Rep ; 14(1): 10242, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702415

Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the prefrontal cortex (PFC). Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.


Electroencephalography , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Male , Adult , Female , Spectroscopy, Near-Infrared/methods , Low-Level Light Therapy/methods , Young Adult , Rest/physiology , Oxyhemoglobins/metabolism , Electron Transport Complex IV/metabolism , Hemodynamics/physiology , Nerve Net/physiology , Nerve Net/metabolism
9.
CNS Neurosci Ther ; 30(4): e14672, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644561

AIMS: Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS: Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS: All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION: Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.


Brain , Magnetic Resonance Imaging , Rest , Seizures , Humans , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Rest/physiology , Young Adult , Seizures/physiopathology , Seizures/diagnostic imaging , Middle Aged , Brain Mapping , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Adolescent , Motor Activity/physiology , Motor Activity/drug effects
10.
Int J Dev Biol ; 68(1): 39-45, 2024.
Article En | MEDLINE | ID: mdl-38591692

Keratin 17 (K17) is thought to be a candidate target gene for regulation by Lymphoid Enhancer Factor-1 (Lef-1). K17 is a marker that distinguishes junctional epithelium (JE) from epithelial rests of Malassez (ERM). However, the relationship of Lef-1 to K17 is not clear in this context. Moreover, the expression of other keratins such as K5, K6, K7 and K16 is not reported. Therefore, the aim of our study was to assay the expression of K5, K6, K7, K14, K16, K17 and Lef-1 in postnatal developing teeth, and clarify the corresponding immunophenotypes of the JE and ERM. Upper jaws of Wistar rats aged from postnatal (PN) day 3.5 to PN21 were used and processed for immunohistochemistry. K5 and K14 were intensely expressed in inner enamel epithelium (IEE), reduced enamel epithelium (REE), ERM and JE. There was no staining for K16 in the tissue, except for strong staining in the oral epithelium. Specifically, at PN3.5 and PN7, K17 was initially strongly expressed and then negative in the IEE. At PN16 and PN21, both REE and ERM were strongly stained for K17, whereas K17 was negative in the JE. In addition, K6, K7 and Lef-1 were not detected in any tissue investigated. REE and ERM have an identical keratin expression pattern before eruption, while JE differs from ERM in the expression of K17 after eruption. The expression of K17 does not coincide with that of Lef-1. These data indicate that JE has a unique phenotype different from ERM, which is of odontogenic origin.


Epithelial Attachment , Rest , Rats , Animals , Epithelial Attachment/metabolism , Rats, Wistar , Epithelium/metabolism , Immunohistochemistry , Keratins/metabolism
11.
Chaos ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38619248

The popularity of nonlinear analysis has been growing simultaneously with the technology of effort monitoring. Therefore, considering the simple methods of physiological data collection and the approaches from the information domain, we proposed integrating univariate and bivariate analysis for the rest and effort comparison. Two sessions separated by an intensive training program were studied. Nine subjects participated in the first session (S1) and seven in the second session (S2). The protocol included baseline (BAS), exercise, and recovery phase. During all phases, electrocardiogram (ECG) was recorded. For the analysis, we selected corresponding data lengths of BAS and exercise usually lasting less than 5 min. We found the utility of the differences between original data and their surrogates for sample entropy Sdiff and Kullback-Leibler divergence KLDdiff. Sdiff of heart rate variability was negative in BAS and exercise but its sensitivity for phases discrimination was not satisfactory. We studied the bivariate analysis of RR intervals and corresponding QT peaks by Interlayer Mutual Information (IMI) and average edge overlap (AVO) markers. While the IMI parameter decreases in exercise conditions, AVO increased in effort compared to BAS. These findings conclude that researchers should consider a bivariate analysis of extracted RR intervals and corresponding QT datasets, when only ECG is recorded during tests.


Electrocardiography , Rest , Humans , Data Collection , Entropy , Heart Rate
12.
Neuroimage ; 292: 120604, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38604537

Despite its widespread use, resting-state functional magnetic resonance imaging (rsfMRI) has been criticized for low test-retest reliability. To improve reliability, researchers have recommended using extended scanning durations, increased sample size, and advanced brain connectivity techniques. However, longer scanning runs and larger sample sizes may come with practical challenges and burdens, especially in rare populations. Here we tested if an advanced brain connectivity technique, dynamic causal modeling (DCM), can improve reliability of fMRI effective connectivity (EC) metrics to acceptable levels without extremely long run durations or extremely large samples. Specifically, we employed DCM for EC analysis on rsfMRI data from the Human Connectome Project. To avoid bias, we assessed four distinct DCMs and gradually increased sample sizes in a randomized manner across ten permutations. We employed pseudo true positive and pseudo false positive rates to assess the efficacy of shorter run durations (3.6, 7.2, 10.8, 14.4 min) in replicating the outcomes of the longest scanning duration (28.8 min) when the sample size was fixed at the largest (n = 160 subjects). Similarly, we assessed the efficacy of smaller sample sizes (n = 10, 20, …, 150 subjects) in replicating the outcomes of the largest sample (n = 160 subjects) when the scanning duration was fixed at the longest (28.8 min). Our results revealed that the pseudo false positive rate was below 0.05 for all the analyses. After the scanning duration reached 10.8 min, which yielded a pseudo true positive rate of 92%, further extensions in run time showed no improvements in pseudo true positive rate. Expanding the sample size led to enhanced pseudo true positive rate outcomes, with a plateau at n = 70 subjects for the targeted top one-half of the largest ECs in the reference sample, regardless of whether the longest run duration (28.8 min) or the viable run duration (10.8 min) was employed. Encouragingly, smaller sample sizes exhibited pseudo true positive rates of approximately 80% for n = 20, and 90% for n = 40 subjects. These data suggest that advanced DCM analysis may be a viable option to attain reliable metrics of EC when larger sample sizes or run times are not feasible.


Brain , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Sample Size , Connectome/methods , Connectome/standards , Reproducibility of Results , Brain/diagnostic imaging , Brain/physiology , Adult , Female , Male , Rest/physiology , Time Factors
13.
Neuroimage ; 292: 120599, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38608799

This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.


Brain , Magnetic Resonance Imaging , Nerve Net , Osteoarthritis, Knee , Humans , Magnetic Resonance Imaging/methods , Female , Male , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Aged , Brain/diagnostic imaging , Brain/physiopathology , Adult , Connectome/methods , Rest , Brain Mapping/methods
14.
Neuroimage ; 292: 120614, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38631618

With increasing age, peak alpha frequency (PAF) is slowed, and alpha power is reduced during resting-states with eyes closed. These age-related changes are evident across the whole scalp but remained unclear at the source level. The purpose of this study was to determine whether age impacts the power and frequency of the dominant alpha rhythm equally across source generators or whether the impact of age varies across sources. A total of 28 young adults and 26 elderly adults were recruited. High-density EEG was recorded for 10 mins with eyes closed. Single dipoles for each independent component were localized and clustered based on their anatomical label, resulting in 36 clusters. Meta-analyses were then conducted to assess effect sizes for PAF and power at PAF for all 36 clusters. Subgroup analyses were then implemented for frontal, sensorimotor, parietal, temporal, and occipital regions. The results of the meta-analyses showed that the elderly group exhibited slower PAF and less power at PAF compared to the young group. Subgroup analyses revealed age effects on PAF in parietal (g = 0.38), temporal (g = 0.65), and occipital regions (g = 1.04), with the largest effects observed in occipital regions. For power at PAF, age effects were observed in sensorimotor (g = 0.84) and parietal regions (g = 0.80), with the sensorimotor region showing the largest effect. Our findings show that age-related slowing and attenuation of the alpha rhythm manifests differentially across cortical regions, with sensorimotor and occipital regions most susceptible to age effects.


Aging , Alpha Rhythm , Electroencephalography , Humans , Male , Alpha Rhythm/physiology , Female , Adult , Aged , Young Adult , Aging/physiology , Electroencephalography/methods , Brain/physiology , Middle Aged , Rest/physiology
15.
Sci Rep ; 14(1): 9316, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654027

Floatation-REST (Reduced Environmental Stimulation Therapy) minimizes stimulation of the nervous system by immersing subjects in an environment without sound or light while they effortlessly float in thermoneutral water supersaturated with Epsom salt. Here we investigated the relationship between altered states of consciousness (ASC) and its association with the affective changes induced by Floatation-REST. Using a within-subject crossover design, 50 healthy subjects were randomized to 60 min of Floatation-REST or 60 min of Bed-REST (an active control condition that entailed lying supine on a warm waterbed in a dark and quiet room). Following Floatation-REST, subjects felt significantly more relaxed, less anxious, and less tired than after Bed-REST. Floatation-REST also induced significantly more pronounced ASC characterized by the dissolution of body boundaries and the distortion of subjective time. The loss of body boundaries mediated the loss of anxiety, revealing a novel mechanism by which Floatation-REST exerts its anxiolytic effect.


Consciousness , Humans , Male , Female , Adult , Consciousness/physiology , Anxiety , Young Adult , Cross-Over Studies , Bed Rest , Rest/physiology
17.
Neurosci Lett ; 831: 137790, 2024 May 14.
Article En | MEDLINE | ID: mdl-38670522

OBJECTIVE: To explore degree centrality (DC) abnormalities in ischemic stroke patients and determine whether these abnormalities have potential value in understanding the pathological mechanisms of ischemic stroke patients. METHODS: Sixteen ischemic stroke patients and 22 healthy controls (HCs) underwent resting state functional magnetic resonance imaging (rs-fMRI) scanning, and the resulting data were subjected to DC analysis. Then we conducted a correlation analysis between DC values and neuropsychological test scores, including Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE). Finally, extracted the abnormal DC values of brain regions and defined them as features for support vector machine (SVM) analysis. RESULTS: Compared with HCs, ischemic stroke patients showed increased DC in the bilateral supplementary motor area, and median cingulate and paracingulate gyri and decreased DC in the left postcentral gyrus, right calcarine fissure and surrounding cortex, lingual gyrus, and orbital parts of the right superior frontal gyrus and bilateral cuneus. Correlation analyses revealed that DC values in the right lingual gyrus, calcarine fissure and surrounding cortex, and orbital parts of the right superior frontal gyrus were positively correlated with the MMSE scores. The SVM classification of the DC values achieved an area under the curve (AUC) of 0.93, an accuracy of 89.47%. CONCLUSION: Our research results indicate that ischemic stroke patients exhibit abnormalities in the global connectivity mechanisms and patterns of the brain network. These abnormal changes may provide neuroimaging evidence for stroke-related motor, visual, and cognitive impairments, contribute to a deeper comprehension of the underlying pathophysiological mechanisms implicated in ischemic stroke.


Brain , Ischemic Stroke , Magnetic Resonance Imaging , Humans , Male , Magnetic Resonance Imaging/methods , Female , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/physiopathology , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Aged , Support Vector Machine , Rest , Brain Mapping/methods , Biomarkers
18.
AJNR Am J Neuroradiol ; 45(5): 637-646, 2024 May 09.
Article En | MEDLINE | ID: mdl-38604737

BACKGROUND AND PURPOSE: Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS: A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS: There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS: Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.


Magnetic Resonance Imaging , Humans , Male , Female , Adult , Magnetic Resonance Imaging/methods , Middle Aged , Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Rest , Young Adult , Connectome/methods , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping/methods , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
19.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38627065

Resting-state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys [n = 12 adolescents (6 male/6 female) ∼2.5 years and n = 15 adults (7 male/8 female) ∼9.5 years] were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 T scanner. Group-level independent component analysis (ICA; 30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes, were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared with adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.


Brain , Magnetic Resonance Imaging , Saimiri , Animals , Magnetic Resonance Imaging/methods , Male , Female , Brain/physiology , Brain/diagnostic imaging , Rest/physiology , Wakefulness/physiology , Brain Mapping/methods , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology
20.
Article En | MEDLINE | ID: mdl-38484928

BACKGROUND: Individuals with schizophrenia spectrum disorders (SSD) often demonstrate cognitive impairments, associated with poor functional outcomes. While neurobiological heterogeneity has posed challenges when examining social cognition in SSD, it provides a unique opportunity to explore brain-behavior relationships. The aim of this study was to investigate the relationship between individual variability in functional connectivity during resting state and the performance of a social task and social and non-social cognition in a large sample of controls and individuals diagnosed with SSD. METHODS: Neuroimaging and behavioral data were analyzed for 193 individuals with SSD and 155 controls (total n = 348). Individual variability was quantified through mean correlational distance (MCD) of functional connectivity between participants; MCD was defined as a global 'variability score'. Pairwise correlational distance was calculated as 1 - the correlation coefficient between a given pair of participants, and averaging distance from one participant to all other participants provided the mean correlational distance metric. Hierarchical regressions were performed on variability scores derived from resting state and Empathic Accuracy (EA) task functional connectivity data to determine potential predictors (e.g., age, sex, neurocognitive and social cognitive scores) of individual variability. RESULTS: Group comparison between SSD and controls showed greater SSD MCD during rest (p = 0.00038), while no diagnostic differences were observed during task (p = 0.063). Hierarchical regression analyses demonstrated the persistence of a significant diagnostic effect during rest (p = 0.008), contrasting with its non-significance during the task (p = 0.50), after social cognition was added to the model. Notably, social cognition exhibited significance in both resting state and task conditions (both p = 0.01). CONCLUSIONS: Diagnostic differences were more prevalent during unconstrained resting scans, whereas the task pushed participants into a more common pattern which better emphasized transdiagnostic differences in cognitive abilities. Focusing on variability may provide new opportunities for interventions targeting specific cognitive impairments to improve functional outcomes.


Psychotic Disorders , Schizophrenia , Humans , Magnetic Resonance Imaging/methods , Psychotic Disorders/diagnostic imaging , Brain/diagnostic imaging , Schizophrenia/diagnostic imaging , Cognition , Rest
...